3.3.44 \(\int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{3/2}} \, dx\) [244]

3.3.44.1 Optimal result
3.3.44.2 Mathematica [A] (verified)
3.3.44.3 Rubi [A] (verified)
3.3.44.4 Maple [B] (warning: unable to verify)
3.3.44.5 Fricas [C] (verification not implemented)
3.3.44.6 Sympy [F]
3.3.44.7 Maxima [F]
3.3.44.8 Giac [F]
3.3.44.9 Mupad [F(-1)]

3.3.44.1 Optimal result

Integrand size = 25, antiderivative size = 327 \[ \int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{3/2}} \, dx=\frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}+\frac {c^2 \arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right ) \sqrt {d \csc (a+b x)} \sqrt {\tan (a+b x)}}{\sqrt {2} b d^2 \sqrt {c \sec (a+b x)}}-\frac {c^2 \arctan \left (1+\sqrt {2} \sqrt {\tan (a+b x)}\right ) \sqrt {d \csc (a+b x)} \sqrt {\tan (a+b x)}}{\sqrt {2} b d^2 \sqrt {c \sec (a+b x)}}+\frac {c^2 \sqrt {d \csc (a+b x)} \log \left (1-\sqrt {2} \sqrt {\tan (a+b x)}+\tan (a+b x)\right ) \sqrt {\tan (a+b x)}}{2 \sqrt {2} b d^2 \sqrt {c \sec (a+b x)}}-\frac {c^2 \sqrt {d \csc (a+b x)} \log \left (1+\sqrt {2} \sqrt {\tan (a+b x)}+\tan (a+b x)\right ) \sqrt {\tan (a+b x)}}{2 \sqrt {2} b d^2 \sqrt {c \sec (a+b x)}} \]

output
2*c*(c*sec(b*x+a))^(1/2)/b/d/(d*csc(b*x+a))^(1/2)-1/2*c^2*arctan(-1+2^(1/2 
)*tan(b*x+a)^(1/2))*(d*csc(b*x+a))^(1/2)*tan(b*x+a)^(1/2)/b/d^2*2^(1/2)/(c 
*sec(b*x+a))^(1/2)-1/2*c^2*arctan(1+2^(1/2)*tan(b*x+a)^(1/2))*(d*csc(b*x+a 
))^(1/2)*tan(b*x+a)^(1/2)/b/d^2*2^(1/2)/(c*sec(b*x+a))^(1/2)+1/4*c^2*ln(1- 
2^(1/2)*tan(b*x+a)^(1/2)+tan(b*x+a))*(d*csc(b*x+a))^(1/2)*tan(b*x+a)^(1/2) 
/b/d^2*2^(1/2)/(c*sec(b*x+a))^(1/2)-1/4*c^2*ln(1+2^(1/2)*tan(b*x+a)^(1/2)+ 
tan(b*x+a))*(d*csc(b*x+a))^(1/2)*tan(b*x+a)^(1/2)/b/d^2*2^(1/2)/(c*sec(b*x 
+a))^(1/2)
 
3.3.44.2 Mathematica [A] (verified)

Time = 2.53 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.43 \[ \int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{3/2}} \, dx=\frac {c \left (4+\sqrt {2} \arctan \left (\frac {-1+\sqrt {\cot ^2(a+b x)}}{\sqrt {2} \sqrt [4]{\cot ^2(a+b x)}}\right ) \sqrt [4]{\cot ^2(a+b x)}-\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{\cot ^2(a+b x)}}{1+\sqrt {\cot ^2(a+b x)}}\right ) \sqrt [4]{\cot ^2(a+b x)}\right ) \sqrt {c \sec (a+b x)}}{2 b d \sqrt {d \csc (a+b x)}} \]

input
Integrate[(c*Sec[a + b*x])^(3/2)/(d*Csc[a + b*x])^(3/2),x]
 
output
(c*(4 + Sqrt[2]*ArcTan[(-1 + Sqrt[Cot[a + b*x]^2])/(Sqrt[2]*(Cot[a + b*x]^ 
2)^(1/4))]*(Cot[a + b*x]^2)^(1/4) - Sqrt[2]*ArcTanh[(Sqrt[2]*(Cot[a + b*x] 
^2)^(1/4))/(1 + Sqrt[Cot[a + b*x]^2])]*(Cot[a + b*x]^2)^(1/4))*Sqrt[c*Sec[ 
a + b*x]])/(2*b*d*Sqrt[d*Csc[a + b*x]])
 
3.3.44.3 Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 211, normalized size of antiderivative = 0.65, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 3104, 3042, 3109, 3042, 3957, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{3/2}}dx\)

\(\Big \downarrow \) 3104

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {c^2 \int \frac {\sqrt {d \csc (a+b x)}}{\sqrt {c \sec (a+b x)}}dx}{d^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {c^2 \int \frac {\sqrt {d \csc (a+b x)}}{\sqrt {c \sec (a+b x)}}dx}{d^2}\)

\(\Big \downarrow \) 3109

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {\tan (a+b x)}}dx}{d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {\tan (a+b x)}}dx}{d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {\tan (a+b x)} \left (\tan ^2(a+b x)+1\right )}d\tan (a+b x)}{b d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {2 c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}}{b d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {2 c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \left (\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}+\frac {1}{2} \int \frac {\tan (a+b x)+1}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}\right )}{b d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {2 c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \left (\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}+\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}+\frac {1}{2} \int \frac {1}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}\right )\right )}{b d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {2 c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \left (\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}+\frac {1}{2} \left (\frac {\int \frac {1}{-\tan (a+b x)-1}d\left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (a+b x)-1}d\left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}\right )\right )}{b d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {2 c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \left (\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )\right )}{b d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {2 c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \left (\frac {1}{2} \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (a+b x)}}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )\right )}{b d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {2 c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (a+b x)}}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )\right )}{b d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {2 c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (a+b x)}}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (a+b x)}+1}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )\right )}{b d^2 \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 c \sqrt {c \sec (a+b x)}}{b d \sqrt {d \csc (a+b x)}}-\frac {2 c^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)} \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{2 \sqrt {2}}\right )\right )}{b d^2 \sqrt {c \sec (a+b x)}}\)

input
Int[(c*Sec[a + b*x])^(3/2)/(d*Csc[a + b*x])^(3/2),x]
 
output
(2*c*Sqrt[c*Sec[a + b*x]])/(b*d*Sqrt[d*Csc[a + b*x]]) - (2*c^2*Sqrt[d*Csc[ 
a + b*x]]*((-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[a + b*x]]]/Sqrt[2]) + ArcTan[1 + 
 Sqrt[2]*Sqrt[Tan[a + b*x]]]/Sqrt[2])/2 + (-1/2*Log[1 - Sqrt[2]*Sqrt[Tan[a 
 + b*x]] + Tan[a + b*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Tan[a + b*x]] + Ta 
n[a + b*x]]/(2*Sqrt[2]))/2)*Sqrt[Tan[a + b*x]])/(b*d^2*Sqrt[c*Sec[a + b*x] 
])
 

3.3.44.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3104
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[b*(a*Csc[e + f*x])^(m + 1)*((b*Sec[e + f*x])^(n - 1)/ 
(f*a*(n - 1))), x] + Simp[b^2*((m + 1)/(a^2*(n - 1)))   Int[(a*Csc[e + f*x] 
)^(m + 2)*(b*Sec[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ 
[n, 1] && LtQ[m, -1] && IntegersQ[2*m, 2*n]
 

rule 3109
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[(a*Csc[e + f*x])^m*((b*Sec[e + f*x])^n/Tan[e + f*x]^n 
)   Int[Tan[e + f*x]^n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !Integer 
Q[n] && EqQ[m + n, 0]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
3.3.44.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(684\) vs. \(2(271)=542\).

Time = 6.83 (sec) , antiderivative size = 685, normalized size of antiderivative = 2.09

method result size
default \(\frac {\sqrt {2}\, {\left (-\frac {c \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}+1\right )}{\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}-1}\right )}^{\frac {3}{2}} \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}-1\right ) \left (\ln \left (\frac {\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )+2 \sqrt {\left (1-\cos \left (b x +a \right )\right ) \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}-1\right ) \csc \left (b x +a \right )}\, \sin \left (b x +a \right )-2 \cos \left (b x +a \right )+2-\sin \left (b x +a \right )}{1-\cos \left (b x +a \right )}\right ) \sqrt {\left (1-\cos \left (b x +a \right )\right ) \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}-1\right ) \csc \left (b x +a \right )}-2 \arctan \left (\frac {\sqrt {\left (1-\cos \left (b x +a \right )\right ) \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}-1\right ) \csc \left (b x +a \right )}\, \sin \left (b x +a \right )-\cos \left (b x +a \right )+1}{1-\cos \left (b x +a \right )}\right ) \sqrt {\left (1-\cos \left (b x +a \right )\right ) \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}-1\right ) \csc \left (b x +a \right )}-\ln \left (-\frac {-\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )+2 \sqrt {\left (1-\cos \left (b x +a \right )\right ) \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}-1\right ) \csc \left (b x +a \right )}\, \sin \left (b x +a \right )+2 \cos \left (b x +a \right )-2+\sin \left (b x +a \right )}{1-\cos \left (b x +a \right )}\right ) \sqrt {\left (1-\cos \left (b x +a \right )\right ) \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}-1\right ) \csc \left (b x +a \right )}-2 \arctan \left (\frac {\sqrt {\left (1-\cos \left (b x +a \right )\right ) \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}-1\right ) \csc \left (b x +a \right )}\, \sin \left (b x +a \right )+\cos \left (b x +a \right )-1}{1-\cos \left (b x +a \right )}\right ) \sqrt {\left (1-\cos \left (b x +a \right )\right ) \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )^{2}-1\right ) \csc \left (b x +a \right )}+8 \cot \left (b x +a \right )-8 \csc \left (b x +a \right )\right ) \sin \left (b x +a \right )^{2}}{4 b \left (1-\cos \left (b x +a \right )\right )^{2} {\left (\frac {d \left (\left (1-\cos \left (b x +a \right )\right )^{2} \csc \left (b x +a \right )+\sin \left (b x +a \right )\right )}{1-\cos \left (b x +a \right )}\right )}^{\frac {3}{2}}}\) \(685\)

input
int((c*sec(b*x+a))^(3/2)/(d*csc(b*x+a))^(3/2),x,method=_RETURNVERBOSE)
 
output
1/4/b*2^(1/2)*(-c*((1-cos(b*x+a))^2*csc(b*x+a)^2+1)/((1-cos(b*x+a))^2*csc( 
b*x+a)^2-1))^(3/2)*((1-cos(b*x+a))^2*csc(b*x+a)^2-1)*(ln(1/(1-cos(b*x+a))* 
((1-cos(b*x+a))^2*csc(b*x+a)+2*((1-cos(b*x+a))*((1-cos(b*x+a))^2*csc(b*x+a 
)^2-1)*csc(b*x+a))^(1/2)*sin(b*x+a)-2*cos(b*x+a)+2-sin(b*x+a)))*((1-cos(b* 
x+a))*((1-cos(b*x+a))^2*csc(b*x+a)^2-1)*csc(b*x+a))^(1/2)-2*arctan(1/(1-co 
s(b*x+a))*(((1-cos(b*x+a))*((1-cos(b*x+a))^2*csc(b*x+a)^2-1)*csc(b*x+a))^( 
1/2)*sin(b*x+a)-cos(b*x+a)+1))*((1-cos(b*x+a))*((1-cos(b*x+a))^2*csc(b*x+a 
)^2-1)*csc(b*x+a))^(1/2)-ln(-1/(1-cos(b*x+a))*(-(1-cos(b*x+a))^2*csc(b*x+a 
)+2*((1-cos(b*x+a))*((1-cos(b*x+a))^2*csc(b*x+a)^2-1)*csc(b*x+a))^(1/2)*si 
n(b*x+a)+2*cos(b*x+a)-2+sin(b*x+a)))*((1-cos(b*x+a))*((1-cos(b*x+a))^2*csc 
(b*x+a)^2-1)*csc(b*x+a))^(1/2)-2*arctan(1/(1-cos(b*x+a))*(((1-cos(b*x+a))* 
((1-cos(b*x+a))^2*csc(b*x+a)^2-1)*csc(b*x+a))^(1/2)*sin(b*x+a)+cos(b*x+a)- 
1))*((1-cos(b*x+a))*((1-cos(b*x+a))^2*csc(b*x+a)^2-1)*csc(b*x+a))^(1/2)+8* 
cot(b*x+a)-8*csc(b*x+a))/(1-cos(b*x+a))^2*sin(b*x+a)^2/(d/(1-cos(b*x+a))*( 
(1-cos(b*x+a))^2*csc(b*x+a)+sin(b*x+a)))^(3/2)
 
3.3.44.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.61 (sec) , antiderivative size = 1310, normalized size of antiderivative = 4.01 \[ \int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate((c*sec(b*x+a))^(3/2)/(d*csc(b*x+a))^(3/2),x, algorithm="fricas")
 
output
-1/8*(b*d^2*(-c^6/(b^4*d^6))^(1/4)*log(1/2*c^5*cos(b*x + a)*sin(b*x + a) + 
 1/2*(b*c^3*d*(-c^6/(b^4*d^6))^(1/4)*cos(b*x + a)^2*sin(b*x + a) + (b^3*d^ 
4*cos(b*x + a)^3 - b^3*d^4*cos(b*x + a))*(-c^6/(b^4*d^6))^(3/4))*sqrt(c/co 
s(b*x + a))*sqrt(d/sin(b*x + a)) + 1/4*(2*b^2*c^2*d^3*cos(b*x + a)^2 - b^2 
*c^2*d^3)*sqrt(-c^6/(b^4*d^6))) - b*d^2*(-c^6/(b^4*d^6))^(1/4)*log(1/2*c^5 
*cos(b*x + a)*sin(b*x + a) - 1/2*(b*c^3*d*(-c^6/(b^4*d^6))^(1/4)*cos(b*x + 
 a)^2*sin(b*x + a) + (b^3*d^4*cos(b*x + a)^3 - b^3*d^4*cos(b*x + a))*(-c^6 
/(b^4*d^6))^(3/4))*sqrt(c/cos(b*x + a))*sqrt(d/sin(b*x + a)) + 1/4*(2*b^2* 
c^2*d^3*cos(b*x + a)^2 - b^2*c^2*d^3)*sqrt(-c^6/(b^4*d^6))) + I*b*d^2*(-c^ 
6/(b^4*d^6))^(1/4)*log(1/2*c^5*cos(b*x + a)*sin(b*x + a) + 1/2*(I*b*c^3*d* 
(-c^6/(b^4*d^6))^(1/4)*cos(b*x + a)^2*sin(b*x + a) - (I*b^3*d^4*cos(b*x + 
a)^3 - I*b^3*d^4*cos(b*x + a))*(-c^6/(b^4*d^6))^(3/4))*sqrt(c/cos(b*x + a) 
)*sqrt(d/sin(b*x + a)) - 1/4*(2*b^2*c^2*d^3*cos(b*x + a)^2 - b^2*c^2*d^3)* 
sqrt(-c^6/(b^4*d^6))) - I*b*d^2*(-c^6/(b^4*d^6))^(1/4)*log(1/2*c^5*cos(b*x 
 + a)*sin(b*x + a) + 1/2*(-I*b*c^3*d*(-c^6/(b^4*d^6))^(1/4)*cos(b*x + a)^2 
*sin(b*x + a) - (-I*b^3*d^4*cos(b*x + a)^3 + I*b^3*d^4*cos(b*x + a))*(-c^6 
/(b^4*d^6))^(3/4))*sqrt(c/cos(b*x + a))*sqrt(d/sin(b*x + a)) - 1/4*(2*b^2* 
c^2*d^3*cos(b*x + a)^2 - b^2*c^2*d^3)*sqrt(-c^6/(b^4*d^6))) - b*d^2*(-c^6/ 
(b^4*d^6))^(1/4)*log(c^5 + 2*(b^3*d^4*(-c^6/(b^4*d^6))^(3/4)*cos(b*x + a)^ 
2*sin(b*x + a) + (b*c^3*d*cos(b*x + a)^3 - b*c^3*d*cos(b*x + a))*(-c^6/...
 
3.3.44.6 Sympy [F]

\[ \int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{3/2}} \, dx=\int \frac {\left (c \sec {\left (a + b x \right )}\right )^{\frac {3}{2}}}{\left (d \csc {\left (a + b x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate((c*sec(b*x+a))**(3/2)/(d*csc(b*x+a))**(3/2),x)
 
output
Integral((c*sec(a + b*x))**(3/2)/(d*csc(a + b*x))**(3/2), x)
 
3.3.44.7 Maxima [F]

\[ \int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{3/2}} \, dx=\int { \frac {\left (c \sec \left (b x + a\right )\right )^{\frac {3}{2}}}{\left (d \csc \left (b x + a\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((c*sec(b*x+a))^(3/2)/(d*csc(b*x+a))^(3/2),x, algorithm="maxima")
 
output
integrate((c*sec(b*x + a))^(3/2)/(d*csc(b*x + a))^(3/2), x)
 
3.3.44.8 Giac [F]

\[ \int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{3/2}} \, dx=\int { \frac {\left (c \sec \left (b x + a\right )\right )^{\frac {3}{2}}}{\left (d \csc \left (b x + a\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((c*sec(b*x+a))^(3/2)/(d*csc(b*x+a))^(3/2),x, algorithm="giac")
 
output
integrate((c*sec(b*x + a))^(3/2)/(d*csc(b*x + a))^(3/2), x)
 
3.3.44.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{3/2}} \, dx=\int \frac {{\left (\frac {c}{\cos \left (a+b\,x\right )}\right )}^{3/2}}{{\left (\frac {d}{\sin \left (a+b\,x\right )}\right )}^{3/2}} \,d x \]

input
int((c/cos(a + b*x))^(3/2)/(d/sin(a + b*x))^(3/2),x)
 
output
int((c/cos(a + b*x))^(3/2)/(d/sin(a + b*x))^(3/2), x)